Abstract
We studied spin states of CdSe quantum dots (QDs) coupled with CdMnSe QDs by probing circular polarization of photoluminescence spectrum under external magnetic fields. The bandgap energies of CdSe and CdMnSe QDs are close to each other and photoluminescence mainly originates from CdSe QDs due to relatively low radiation efficiency of CdMnSe QDs. The photoluminescence lifetime as well as its intensity was decreased with increasing magnetic field, which was ascribed to the increase in the ground state wavefunctions in CdMnSe QDs. The decrease was more pronounced for spin down electrons, which was explained by the difference in spin up and down wave functions under magnetic fields. Our results show that the spin state of CdSe QDs can be manipulated by coupling with CdMnSe QDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.