Abstract

Control of the low-temperature sintering of nanosilver particles was attained by dispersing and stabilizing nanosilver particles into a paste form using the selected organic binder systems. As demonstrated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), with the existing binder systems, undesirable premature coalescence of nanosilver particles was prevented and the metastable structure was retained until the binder burned out at relatively higher temperatures. Enhanced densification was achieved upon the binder burnout because at the relatively higher temperatures the densification mechanisms, e.g., grain-boundary or lattice diffusion, become more dominant. We propose that the onset of sintering, extent of densification, and final grain size can be controlled by either the size of the initial nanosilver particles or the binder systems with different burnout characteristics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.