Abstract

External ATP causes a great increase in the passive permeability of the plasma membrane for phosphorylated metabolites and other small molecules in cultured mammalian cells. We previously demonstrated that in CHO-K1 cells an ATP-dependent permeability change was induced in the presence of a mitochondrial inhibitor (KCN or rotenone), a cytoskeleton-attacking agent (vinblastine) and a calmodulin antagonist (trifluoperazine). These permeability changes were reversible but long exposure, for 30–60 min, to ATP together with a mitochondrial inhibitor significantly reduced the cell viability of the treated cells. Since this cells lysis was shown to be due to the ATP-dependent permeability change, we could isolate several clones resistant to the action of the external ATP from CHO-K1 cells after repeated treatment with ATP and rotenone. In 9.1 cells, one of the isolated clones, little or no ATP-dependent permeability change was observed in the presence of either a mitochondrial inhibitor, vinblastine or trifluoperazine. This CHO variant could be specifically resistant as to the change in membrane permeability induced by external ATP, since the permeabilities for the 2-deoxyglucose and drugs used in the present studies were similar to those in the case of the parent cells. These results suggest that a specific defect or alteration in the plasma membrane is involved in the ATP-dependent permeability change. It is also reported that Mg 2+-dependent ATPase activity was found on the cell surface of both CHO-K1 and 9.1 cells, and this activity was shown to be not involved in the permeability change controlled by external ATP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.