Abstract

In contrast to the Euler–Poincare reduction of geodesic flows of left- or right-invariant metrics on Lie groups to the corresponding Lie algebra (or its dual), one can consider the reduction of the geodesic flows to the group itself. The reduced vector field has a remarkable hydrodynamic interpretation: it is the velocity field for a stationary flow of an ideal fluid. Right- or left-invariant symmetry fields of the reduced field define vortex manifolds for such flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.