Abstract

Using ab initio density functional theory, we demonstrated the possibility of controlling the magnetic ground-state properties of bilayer CrCl_{3} by means of mechanical strains and electric fields. In principle, we investigated the influence of these two fields on parameters describing the spin Hamiltonian of the system. The obtained results show that biaxial strains change the magnetic ground state between ferromagnetic and antiferromagnetic phases. The mechanical strain also affects the direction and amplitude of the magnetic anisotropy energy (MAE). Importantly, the direction and amplitude of the Dzyaloshinskii–Moriya vectors are also highly tunable under external strain and electric fields. The competition between nearest-neighbor exchange interactions, MAE, and Dzyaloshinskii–Moriya interactions can lead to the stabilization of various exotic spin textures and novel magnetic excitations. The high tunability of magnetic properties by external fields makes bilayer CrCl_{3} a promising candidate for application in the emerging field of two-dimensional quantum spintronics and magnonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.