Abstract
Perpendicular magnetic anisotropy forms the foundation of the current data storage technology. However, there is an ever-increasing demand for higher density data storage, faster read-write access times, and lower power consuming storage devices, which requires new materials to reduce the switching current, improve bit-to-bit distributions, and improve reliability of writing with scalability below 10 nm. Here, vertically aligned nanocomposites (VANs) composed of self-assembled ferromagnetic La0.7Sr0.3MnO3 (LSMO) nanopillars in a surrounding ZnO matrix are investigated for controllable magnetic anisotropy. Confinement of LSMO into nanopillar dimensions down to 15 nm in such VAN films aligns the magnetic easy axis along the out-of-plane (i.e., perpendicular) direction, in strong contrast to the typical in-plane easy axis for strained, phase pure LSMO thin films. The dominant contribution to the magnetic anisotropy in these (LSMO)0.1(ZnO)0.9 VAN films comes from the shape of the nanopillars, while the epitaxial strain at the vertical LSMO:ZnO interfaces exhibits a negligible effect. These VAN films with their large, out-of-plane remnant magnetization of 2.6 μB/Mn and bit density of 0.77 Tbits/inch2 offer an interesting strategy for enhanced data storage applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.