Abstract

Hydrogen diffusion into steel can embrittle the material in H2S environments, but this effect can be offset by suitable hydrogen trapping sites in the microstructure. Fine Ti(C,N) inclusions have been studied as the trapping sites in high strength low alloy (API X-70) welds, with Ti additions ranging from 0.004 to 0.16 wt.%. The trapping sites were investigated by electron microscopy and thermal desorption spectroscopy. Manganese sulphide particles were the main initiation sites for hydrogen induced cracking as expected. The optimum Ti addition was around 0.02% with no evidence of cracking in the weld. The estimated values of trapping activation energy for dislocations, microvoids, MnS and Ti(C, N) were approximately 25.9, 34.6, 65.1 and 87.6 kJ mol−1, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.