Abstract

The effect of modulated air jets, introduced through the combustor shell, on the temperature distribution and nitric oxide emissions is investigated. Temperature and emissions measurements have been made at a number of forcing frequencies in the range of 100–850 Hz, blowing ratios in the range of 4–10 and equivalence ratios between 0.6 and 1.0. Open-loop flame response to forcing has also been acquired by recording pressure spectra. Results show that substantial reductions in nitric oxide emissions index (15–30%) can be obtained over a wide range of flow conditions with side-air jet forcing. In addition, forcing also alters the time averaged temperature field, with higher mean temperatures close to the dump plane, due to enhanced fuel-air mixing. The higher temperatures and volumetric heat release obtained with forcing can enable more compact combustor designs. The lower emissions are potentially linked to greater unsteadiness with forcing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.