Abstract

In this brief, we consider the problem of tracking a desired trajectory for fully actuated ocean vessels, in the presence of uncertainties and unknown disturbances. The combination of approximation-based and domination design techniques allows us to handle time-varying disturbances, without the need for explicit knowledge of the bounds. Using backstepping and Lyapunov synthesis, the stable tracking controller is first designed for the full-state feedback case. Subsequently, the output feedback problem is tackled by employing a high-gain observer to estimate the unmeasurable states required by the stable tracking controller. Under the proposed control, semiglobal uniform boundedness of the closed-loop signals is guaranteed for both full-state and output feedback cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.