Abstract

We report graphene thickness, uniformity and surface morphology dependence on the growth temperature and local variations in the off-cut of Si-face 4H-SiC on-axis substrates. The transformation of the buffer layer through hydrogen intercalation and the subsequent influence on the charge carrier mobility are also studied. A hot-wall CVD reactor was used for in-situ etching, graphene growth in vacuum and the hydrogen intercalation process. The number of graphene layers is found to be dependent on the growth temperature while the surface morphology also depends on the local off-cut in the substrate and results in a non-homogeneous surface. Additionally, the influence of dislocations on surface morphology and graphene thickness uniformity is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.