Abstract

This study investigates the removal of selected pharmaceuticals, as recalcitrant organic compounds, from synthetic wastewater using an electro-membrane bioreactor (eMBR). Diclofenac (DCF), carbamazepine (CBZ), and amoxicillin (AMX) were selected as representative drugs from three different therapeutic groups such as anti-inflammatory, anti-epileptic, and antibiotic, respectively. An environmentally relevant concentration (10μg/L) of each compound was spiked into the synthetic wastewater, and then, the impact of appending electric field on the control of membrane fouling and the removal of conventional contaminants and pharmaceutical micropollutants were assessed. A conventional membrane bioreactor (MBR) was operated as a control test. A reduction of membrane fouling was observed in the eMBR with a 44% decrease of the fouling rate and a reduction of membrane fouling precursors. Humic substances (UV254), ammonia nitrogen (NH4-N), and orthophosphate (PO4-P) showed in eMBR removal efficiencies up to 90.68±4.37, 72.10±13.06, and 100%, respectively, higher than those observed in the MBR. A reduction of DCF, CBZ, and AMX equal to 75.25±8.79, 73.84±9.24, and 72.12±10.11%, respectively, was found in the eMBR due to the enhanced effects brought by electrochemical processes, such as electrocoagulation, electrophoresis, and electrooxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.