Abstract

Abstract High-order harmonic generation from the asymmetric molecular ion HeH2+ exposed to intense laser fields was investigated by quantum wave packet calculations in which the initial wave packet of HeH2+ was prepared in the first excited 2 p σ state. The calculated molecular harmonic plateau at low frequencies was effectively isolated and enhanced by adjusting the carrier-envelope phase (CEP) of the laser field. Furthermore, double-well model, time-dependent electronic density, electronic state population, and time-frequency analyses were presented to explain the underlying mechanism of the efficient isolated molecular plateau. By taking advantage of the CEP effect to control the electronic dynamics, this isolated molecular plateau can be used to generate high-intensity single attosecond pulses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.