Abstract

In this paper, a nonlinear controller design for constrained systems described by Lagrangian differential algebraic equations (DAEs) is presented. The controller design utilizes the structure introduced by the coordinate splitting formulation, a numerical technique used for integration of DAEs. In this structure, the Lagrange multipliers associated with the constraint equations are eliminated, and the equations of motion are transformed into implicit differential equations. Making use of this, a feedback linearizing controller can be chosen for successful motion tracking of the constrained system. Numerical examples demonstrate the controller design can be successfully applied to fully actuated and underactuated systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.