Abstract

This paper is concerned with event-triggered cooperative control of a platoon of connected vehicles via vehicular ad hoc networks (VANETs). To reduce communications among vehicles, we introduce a hybrid event-triggered transmission mechanism based on both time elapsed and state error. The effect of time-varying transmission delay and communication energy constraint can be also taken into account in the system modeling and design procedures. The on-board sensors use different power levels to transmit information resulting in different packet loss rates. The vehicular platoon system is proved to be exponentially mean-square stable under the hybrid event-triggering scheme and a constant time headway spacing policy. A framework for co-design of the hybrid event triggering scheme and the output feedback controller is given to guarantee platoon stability and spacing-error convergence along the stream. Numerical simulations are given to demonstrate the effectiveness of proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.