Abstract

GADD34, the product of a growth arrest and DNA damage-inducible gene, is expressed at low levels in unstressed cells. In response to stress, the cellular content of GADD34 protein increases and, on termination of stress, rapidly declines. We investigated the mechanisms that control GADD34 levels in human cells. GADD34 proteins containing either an internal FLAG or a C-terminal green fluorescent protein epitope were degraded at rates similar to endogenous GADD34. However, the addition of epitopes at the N terminus or deletion of N-terminal sequences stabilized GADD34. N-terminal peptides of GADD34, either alone or fused to heterologous proteins, exhibited rapid degradation similar to wild-type GADD34, thereby identifying an N-terminal degron. Deletion of internal PEST repeats had no impact on GADD34 stability but modulated the binding and activity of protein phosphatase 1. Proteasomal but not lysosomal inhibitors enhanced GADD34 stability and eukaryotic initiation factor 2alpha (eIF-2alpha) dephosphorylation, a finding consistent with GADD34's role in assembling an eIF-2alpha phosphatase. GADD34 was polyubiquitinated, and this modification enhanced its turnover in cells. A stabilized form of GADD34 promoted the accumulation and aggregation of the mutant cystic fibrosis transmembrane conductance regulator (CFTRDeltaF508), highlighting the physiological importance of GADD34 turnover in protein processing in the endoplasmic reticulum and the potential impact of prolonged GADD34 expression in human disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.