Abstract

We experimentally demonstrate the feasibility of a small, low-power beam deflector based on electrowetting. The beam deflector deflects light by refraction at the flat interface (meniscus) between two immiscible and density-matched liquids, namely, a nonpolar oil mixture and an aqueous salt solution. The liquids are contained in a square pyramidal frustum with electrode-covered faces. The electrodes can be separately driven by voltage sources in order to control the contact angle between the meniscus and the frustum faces. By controlling the voltage on all four electrodes, a flat meniscus is obtained that can be tilted independently in two perpendicular directions. We present a capacitance-based feedback driving scheme and demonstrate that it can be used for accurate control of the meniscus shape and tilt. Independent, continuous, and accurate beam steering through an angle of ±6° was achieved on two deflection axes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.