Abstract
Call admission and routing control decisions in stochastic loss (circuit-switched) networks with semi Markovian, multi-class, call arrival and general connection time processes are formulated as optimal stochastic control problems. The resulting so-called Hybrid Dynamic Programming equation systems take the form of vectors of partial differential equations with each component associated to a distinct distribution of routed calls over the network (i.e. distinct occupation states). This framework reduces to that of a Markov Decision Process when the traffic is Poisson and the associated computational limitations are approximately those of linear programs. Examples are provided of (i) network state space constructions and controlled state transition processes, (ii) a new closed form solution for a simple network, and (iii) the analysis and illustrative numerical results for a three link network.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.