Abstract
AbstractThe acceptor doping of mercury cadmium telluride (HgCdTe) layers grown by MOCVD are investigated. (111)HgCdTe layers were grown on (100)GaAs substrates at 350°C using horizontal reactor and interdiffused multilayer process (IMP). TDMAAs and AsH3 were alternatively used as effective p-type doping precursors. Incorporation and activation rates of arsenic have been studied. Over a wide range of Hg1−xCdxTe compositions (0.17 < x < 0.4), arsenic doping concentration in the range from 5×1015 cm−3 to 5×1017 cm−3 was obtained without postgrowth annealing. The electrical and chemical properties of epitaxial layers are specified by measurements of SIMS profiles, Hall effect and minority carrier lifetimes. It is confirmed that the Auger-7 mechanism has decisive influence on carrier lifetime in p-type HgCdTe epilayers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.