Abstract

Recently, a predictor feedback control strategy has been reported for the feedback stabilization of a class of infinite-dimensional Riesz-spectral boundary control systems exhibiting a finite number of unstable modes by means of a delay boundary control. Nevertheless, for real abstract boundary control systems exhibiting eigenstructures defined over the complex field, the direct application of such a control strategy requires the embedding of the control problem into a complexified state-space which yields a complex-valued control law. This letter discusses the realification of the control law, i.e., the modification of the design procedure for obtaining a real-valued control law for the original real abstract boundary control system. The obtained results are applied to the feedback stabilization of an unstable Euler–Bernoulli beam by means of a delay boundary control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.