Abstract
SummaryIn this paper, controller design for discrete‐time bilinear systems is investigated by using sum of squares programming methods and quadratic Lyapunov functions. The class of rational polynomial controllers is considered, and necessary conditions on the degree of controller polynomials for quadratic stability are derived. Next, a scalarized version of the Schur complement is proposed. For controller design, the Lyapunov difference inequality is converted to a sum of squares problem, and an optimization problem is proposed to design a controller, which maximizes the region of quadratic stability of the bilinear system. Input constraints can also be accounted for. Copyright © 2017 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.