Abstract

Turnip seedlings (Brassica rapa L.) irradiated for 24 hours with radiation at 720 nanometers synthesize chlorophyll a and anthocyanin. Antimycin A and 2,4-dinitrophenol, which are known to reduce cyclic photophosphorylation, also reduce anthocyanin synthesis. Noncyclic photophosphorylation is inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and o-phenanthroline. These compounds promote cyclic photophosphorylation and anthocyanin synthesis. On the basis of these findings it is suggested that the photomorphogenic response of anthocyanin synthesis in turnip seedlings arises in part through photosynthetic activity.Phytochrome involvement in turnip seedling photomorphogenesis is evidenced by the photoreversibility of anthocyanin synthesis in response to 5-minute irradiations with red or far red light. The inhibition of anthocyanin synthesis by 2,4-dinitrophenol does not arise from a destruction of phytochrome photoreversibility.It is suggested that plant photomorphogenic responses to prolonged far red irradiations arise through the photochemical activation of at least two pigment systems; namely, the photosynthetic pigments and phytochrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.