Abstract

The goal of the paper is to include non-stationary random vibration excitation into the "classic" statistical solution of vehicles. Other vehicle parameters are the deterministic functions. The non-stationary random function will be modelled by changeable speed of the vehicle and vertical unevenness of track. We shall assume evolutionary Gaussian process. The dynamics of railway vehicle motion will be analysed by the Monte Carlo simulation and the theory of Markov processes.

Highlights

  • Väčšina štúdií v oblasti stochastickej dynamiky je venovaná gaussovským stacionárnym budeniam, ale len málo náhodných procesov v inžinierskej praxi je reálne gaussovských a stacionárnych

  • Most studies in the field of stochastic dynamics are devoted to Gaussian stationary excitations but only a few random processes in engineering practice are really Gaussian and stationary

  • Some authors look for the new approaches of the solution by combining the Monte Carlo method with other methods [7]

Read more

Summary

PRÍSPEVOK K ANALÝZE NESTACIONÁRNEHO NÁHODNÉHO KMITANIA VOZIDIEL

Cieľom príspevku je zahrnúť do „klasického“ štatistického riešenia kmitania vozidiel nestacionárne náhodné budenie. Nestacionárna náhodná funkcia bude modelovaná premenlivou rýchlosťou vozidla a vertikálnou nerovnosťou trate. Dynamika pohybu koľajového vozidla bude analyzovaná použitím Monte Carlo simulácie a teórie Markovových procesov. Kľúčové slová: náhodné kmitanie, Monte Carlo simulácia, Markovov proces nestacionárny náhodný proces, stochastická analýza, odozva strednej hodnoty, kovariančná odozva. The goal of the paper is to include non-stationary random vibration excitation into the “classic” statistical solution of vehicles. Other vehicle parameters are the deterministic functions. The non-stationary random function will be modelled by changeable speed of the vehicle and vertical unevenness of track. The dynamics of railway vehicle motion will be analysed by the Monte Carlo simulation and the theory of Markov processes

Introduction
Mathematical model
Statistical analysis of railway vehicle vibration
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.