Abstract

The tricellular tight junction (tTJ) is a potential weak point of the paracellular barrier. For solving the proportional contribution of the tTJ, ion conductances and macromolecule permeabilities were analyzed in cell lines of different leakiness. MDCK II, Caco-2, and HT-29/B6 cells were subjected to two-path impedance spectroscopy and morphological analyses in order to calculate the contribution of the tTJ to paracellular and total ion conductivity. The contribution to macromolecule permeability was evaluated by tricellulin overexpression or knockdown. Tricellulin-dependent macromolecule passage was comparably regulated in leaky and tight epithelia, but relative and absolute ion permeabilities of the tTJs were different. Assuming a minimal (50 pS) and maximal (146 pS) conductivity per single tTJ, the possible range of contribution of the tTJ to paracellular ion conductance amounted to only 0.3-1.1% in the leaky cell line MDCK II, but 3-25% in the moderately tight cell line Caco-2, and not less than 29% in the tight cell line HT-29/B6. In these cells, this resulted in a contribution to total epithelial conductance of 9-32%. In conclusion, in leaky epithelia the bicellular TJ accounts for nearly the entire paracellular ion conductance, whereas in tight epithelia the low bicellular TJ conductance has large impact on the tTJ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.