Abstract

It is well known that spinal glia plays a key role in the pathogenesis of pain. The present study was designed to determine the roles of spinal microglia in bee venom-induced persistent spontaneous nociception (PSN), mechanical hyperalgesia and inflammation. We determined the effects of microglia inhibitor minocycline on BV-induced PSN, mechanical hyperalgesia and inflammatory swelling. Pre-treatment with intrathecal administration of minocyline at different doses significantly inhibited BV-induced PSN and mechanical hyperalgesia, but had no effect on BV-induced inflammatory swelling. These data suggest that the activation of spinal microglia may play a key role in BV-induced nociception, but not inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.