Abstract
Despite the increasing research and clinical interest in the predisposition of psoriasis, a chronic inflammatory skin disease, the multitude of genetic and environmental factors involved in its pathogenesis remain unclear. This complexity is further exacerbated by the several cell types that are implicated in Psoriasis’s progression, including keratinocytes, melanocytes and various immune cell types. The observed interactions between the genetic substrate and the environment lead to epigenetic alterations that directly or indirectly affect gene expression. Changes in DNA methylation and histone modifications that alter DNA-binding site accessibility, as well as non-coding RNAs implicated in the post-transcriptional regulation, are mechanisms of gene transcriptional activity modification and therefore affect the pathways involved in the pathogenesis of Psoriasis. In this review, we summarize the research conducted on the environmental factors contributing to the disease onset, epigenetic modifications and non-coding RNAs exhibiting deregulation in Psoriasis, and we further categorize them based on the under-study cell types. We also assess the recent literature considering therapeutic applications targeting molecules that compromise the epigenome, as a way to suppress the inflammatory cutaneous cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.