Abstract

We examine some implications of inertial range and dissipation range correlation and spectral analyses extracted from 33 intervals of Wind magnetic field data. When field polarity and signatures of cross helicity and magnetic helicity are examined, most of the data sets suggest some role of cyclotron-resonant dissipative processes involving thermal protons. We postulate that an active spectral cascade into the dissipation range is balanced by a combination of cyclotron-resonant and noncyclotron-resonant kinetic dissipation mechanisms, of which only the former induces a magnetic helicity signature. A rate balance theory, constrained by the data, suggests that the ratio of the two mechanisms is of order unity. While highly simplified, this approach appears to account for several observed features and explains why complete cyclotron absorption, and the corresponding pure magnetic helicity signature, is usually not observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.