Abstract

Greenhouse gases (GHG) have extensive environmental effects by trapping heat and causing climate change and air pollution. Land plays a key role in the global cycles of GHG (i.e., carbon dioxide (CO2), methane (CH4), and nitrogen oxide (N2O)), and land use change (LUC) can lead to the release of such gases into the atmosphere or the removal of them from the atmosphere. One of the most common forms of LUC is agricultural land conversion (ALC) where agricultural lands are converted for other uses. This study aimed to review 51 original papers from 1990 to 2020 that investigate the contribution of ALC to GHG emissions from a spatiotemporal perspective using a meta-analysis method. The results of spatiotemporal effects on GHG emissions showed that the effects were significant. The emissions were affected by different continent regions representing the spatial effects. The most significant spatial effect was relevant to African and Asian countries. In addition, the quadratic relationship between ALC and GHG emissions had the highest significant coefficients, showing an upward concave curve. Therefore, increasing ALC to more than 8 % of available land led to increasing GHG emissions during the economic development process. The implications of the current study are important for policymakers from two perspectives. First, to achieve sustainable economic development, policymaking should prevent the conversion of more than 90 % of agricultural land to other uses based on the turning point of the second model. Second, policies to control global GHG emissions should take into account spatial effects (e.g., continental Africa and Asia), which show the highest contribution to GHG emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.