Abstract

Detecting and mitigating leaks in water distribution networks are vital for water conservation. Machine-learning-based (ML) acoustic leak detection models were introduced as effective alternatives for leak management. However, ML model training requires sufficient labeled data, which hinders related development. To address this challenge, this study employed contrastive learning (CL) for leak detection using limited labeled signals. Experimental results indicate that flip-x and amplitude scaling are optimal combinations for contrastive learning. Besides, ablation and t-distributed stochastic neighbor embedding (t-SNE) results reveal that increasing the model depth does not always yield performance improvement, and five convolutional blocks are more suitable for the leak detection problem in this study. Comparison experiments demonstrate that contrastive learning outperforms supervised learning (SL) when trained with insufficient labeled data. The out-of-sample validation results indicate that the proposed leak detection model is robust and effective in unexplored pipelines. The proposed framework significantly advances ML-based leak detection research and supports sustainable water management practices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.