Abstract

Forest trees use various water sources to adapt to environmental conditions in mountainous regions. However, water resources variances along elevational gradients are not clearly understood. This limits the assessment of the ecosystem responses to climate change. In this study, stable oxygen and hydrogen isotopes were used to investigate the spatiotemporal patterns of water sources for Faber's fir in a humid high-altitude elevational gradient (ranging between 2800 m.a.s.l. and 3700 m.a.s.l.) on the southeastern Tibetan Plateau. The results indicated that 27 ± 8.3 % of the xylem water was from previous winter snowmelt between May and June. In contrast, almost all xylem water was from current summer precipitation between July and October. Faber's fir at the lower elevation (2800 m.a.s.l.) primarily relied on water derived from winter precipitation during May and June. Yet, trees located near the tree line (3700 m.a.s.l.) were mostly dependent on current precipitation over the entire growing season. However, when statistically analyzing data from all seven different elevation gradients in this study, the contribution of winter precipitation to xylem water was not elevation dependent. Precipitation contributed to a large proportion (59.86 % ± 33.43 %) of xylem water between May and October. Meanwhile, no linear contribution ratio of precipitation to trees was identified in this high-altitude elevational gradient. The replenishment of soil water and the soil water storage determine the spatiotemporal patterns of water sources. Climate change has the possibility of reducing winter precipitation at high altitudes on the Tibetan Plateau. Thus, tree water use at different altitude gradients will play varied roles in influencing the evolution of forest composition under ongoing climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.