Abstract
Background: Epidemiologists and toxicologists face similar problems when assessing interactions between exposures, yet they approach the question very differently. The epidemiologic definition of “interaction” leads to the additivity of risk differences (RDA) as the fundamental criterion for causal inference about biological interactions. Toxicologists define “interaction” as departure from a model based on mode of action: concentration addition (CA; for similarly acting compounds) or independent action (IA; for compounds that act differently).Objectives: We compared and contrasted theoretical frameworks for interaction in the two fields.Methods: The same simple thought experiment has been used in both both epidemiology and toxicology to develop the definition of “noninteraction,” with nearly opposite interpretations. In epidemiology, the “sham combination” leads to a requirement that noninteractive dose–response curves be linear, whereas in toxicology, it results in the model of CA. We applied epidemiologic tools to mathematical models of concentration-additive combinations to evaluate their utility.Results: RDA is equivalent to CA only for linear dose–response curves. Simple models demonstrate that concentration-additive combinations can result in strong synergy or antagonism in the epidemiologic framework at even the lowest exposure levels. For combinations acting through nonsimilar pathways, RDA approximates IA at low effect levels.Conclusions: Epidemiologists have argued for a single logically consistent definition of interaction, but the toxicologic perspective would consider this approach less biologically informative than a comparison with CA or IA. We suggest methods for analysis of concentration-additive epidemiologic data. The two fields can learn a great deal about interaction from each other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.