Abstract

Change blindness is the failure of observers to notice otherwise obvious changes to a visual scene when those changes are masked in some way (eg by blotches or a blanking ofthe screen). Typically, change blindness is taken as evidence that our representation of the visual world is capacity limited. The locus of this capacity limit is thought to be visual short-term memory (vSTM). The capacity of vSTM is usually estimated with a high-threshold model which assumes that each element in the stimulus array is either fully encoded or not encoded at all, and, furthermore, that false alarms can arise only by guessing, not by noise. Low-threshold models, by contrast, suggest that false alarms can arise by noise at the level of detection/discrimination and/or decision. In this study, we use a well-controlled stimulus display in which a single element changes over a blanking of the screen and contrast predictions from a popular high-threshold model of vSTM with the predictions of a low-threshold model (specifically, the sample-size model) of visual search and vSTM. The data were better predicted by the low-threshold model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.