Abstract

As biochemical traits with clear fitness consequences, venoms serve a critical ecological role for the animals that produce them. Understanding how venoms are maintained and regenerated after use will, therefore, provide valuable insight into the ecology of venomous animals. Furthermore, most studies on venomous organisms often require removing animals from the wild and waiting extended periods of time between venom extractions. Uncovering the patterns of venom regeneration across different species will likely lead to the development of more efficient venom extraction protocols, reducing both experimental time and the number of animals required. Using reversed-phase high-performance liquid chromatography, we identified asynchronous regeneration of venom protein component abundances in the centipede Scolopendra viridis, but found no evidence for asynchronous venom regeneration in the scorpion Centruroides hentzi. We also observed high levels of intraspecific venom variation in C. hentzi, emphasizing the importance of testing for intraspecific venom variation in studies evaluating the synchronicity of venom regeneration. Although the regeneration of relative venom protein component abundances is an asynchronous process in S. viridis, we provide evidence that the presence-absence of major venom components is not an asynchronous process and suggest that studies relying on just the presence-absence of individual proteins (e.g. bioprospecting, drug discovery) could use catch-and-release methods of venom extraction to reduce the number of animals removed from the wild.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call