Abstract
Motor activity of juvenile walleye pollock, Theragra chalcogramma, and sablefish, Anoplopoma fimbria, was monitored in the laboratory during high and low light levels under a changing temperature regime over a 5 d period. Water temperatures were ambient (12 °C) for the first 24 h of observation, rapidly lowered to 3 °C for the next 48 h, then raised back to 12 °C for the final 48 h. We hypothesized that the fishes' behavior would either follow a simple bioenergetic response of lowered activity associated with reduced metabolic rates at the colder temperature, or an avoidance response, with increased activity at decreased temperatures. Results for walleye pollock were consistent with a bioenergetic response, with activity decreasing in the presence of cold water under both high and low light levels, then returning to initial levels when temperatures increased. The response of sablefish, in contrast, indicated avoidance of cold temperatures, depending on light level. During high light, when sablefish were typically highly active, cold water induced a slight but insignificant decrease in activity. At low light, however, the presence of cold water caused a marked increase in sablefish movement through the experimental tanks, with a seven fold increase in the measured index of activity. When water temperatures were raised back to 12 °C, sablefish activity at low light returned to its normal, minimal level. The sharp increase in activity of sablefish in cold water, followed by a decrease in activity when the temperature was raised to pre-test levels, is suggestive of an avoidance response. The contrasting responses of the two species to thermal changes are consistent with their separate life history patterns and natural distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.