Abstract

The method of third harmonic (3f0 transmit phasing is capable of providing effective tissue background suppression for contrast-to-tissue ratio (CTR) improvement in harmonic imaging. With the additional 3f0 transmit signal to generate both the frequency-sum and the frequency-difference components of harmonic signal, the tissue suppression is achieved when the two components are opposite in phase and mutually cancel out. One major problem in 3f0 transmit phasing is the limited signal-to-noise ratio (SNR) due to the constraint on transmit amplitude. Chirp excitation can be applied in contrast harmonic imaging to enhance the SNR with minimal destruction of the microbubbles. In this paper, the effect of chirp waveform in combination with the 3f0 transmit phasing was studied using both in-vitro experiments and simulations. Our results indicate that, though the chirp transmit pulse can increase the SNR of harmonic imaging in 3f0 transmit phasing (3 dB, p < 0.001), it suffers from degraded tissue harmonic suppression and thus provides less CTR improvement as compared to a conventional pulse. The spectral mismatch between the frequency-sum and the frequency-difference components of tissue harmonic signal is particularly evident in the off-center region of second harmonic band, leading to significant residue tissue background. Consequently, with the chirp waveform, the improvement of CTR decreases from 9.5 dB to 5.9 dB (p < 0.0006) and thus a tradeoff exists between the SNR improvement and the CTR improvement in 3f0 transmit phasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.