Abstract

Muscle fibers of mdx mice that lack dystrophin are more susceptible to contraction-induced injury, particularly when stretched. In contrast, transgenic mdx (tg-mdx) mice, which overexpress dystrophin, show no morphological or functional signs of dystrophy. Permeabilization disrupts the sarcolemma of fibers from muscles of mdx, tg-mdx, and control mice. We tested the null hypothesis stating that, after single stretches of maximally activated single permeabilized fibers, force deficits do not differ among fibers from extensor digitorum longus muscles of mdx, tg-mdx, or control mice. Fibers were maximally activated by Ca(2+) (pCa 4.5) and then stretched through strains of 10%, 20%, or 30% of fiber length (L(f)) at a velocity of 0.5 L(f)/s. Immediately after each strain, the force deficits were not different for fibers from each of the three groups of mice. When collated with studies of membrane-intact fibers in whole muscles of mdx, tg-mdx, and control mice, these results indicate that dystrophic symptoms do not arise from factors within myofibrils but, rather, from disruption of the sarcolemmal integrity that normally provides protection from contraction-induced injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.