Abstract

We consider a hyperbolic–parabolic system arising from a chemotaxis model in tumor angiogenesis, which is described by a Keller–Segel equation with singular sensitivity. It is known to allow viscous shocks (so-called traveling waves). We introduce a relative entropy of the system, which can capture how close a solution at a given time is to a given shock wave in almost [Formula: see text]-sense. When the shock strength is small enough, we show the functional is non-increasing in time for any large initial perturbation. The contraction property holds independently of the strength of the diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.