Abstract

In this paper, we investigate the contracting curvature flow of closed, strictly convex axially symmetric hypersurfaces in $\mathbb{R}^{n+1}$ and $\mathbb{S}^{n+1}$ by $\sigma_k^\alpha$, where $\sigma_k$ is the $k$-th elementary symmetric function of the principal curvatures and $\alpha\ge 1/k$. We prove that for any $n\geq3$ and any fixed $k$ with $1\leq k\leq n$, there exists a constant $c(n,k)>1/k$ such that that if $\alpha$ lies in the interval $[1/k,c(n,k)]$, then we have a nice curvature pinching estimate involving the ratio of the biggest principal curvature to the smallest principal curvature of the flow hypersurface, and we prove that the properly rescaled hypersurfaces converge exponentially to the unit sphere. In the case $1<k\le n \le k^2$, we can choose $c(n,k)=\frac{1}{k-1}$. Our results provide an evidence for the general convergence result without initial curvature pinching conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.