Abstract

The Mediterranean outflow water (MOW) paleocirculation during the last 50,000 years has been inferred from the grain-size distribution of contourite beds in core MD99-2341 from the Gulf of Cadiz (Southern Iberian Margin–Atlantic Ocean). Three main contourite facies are described. Their vertical succession defines two contourite sequences that reveal past variations of the MOW bottom-current velocity. A comparison of contourite sequences and the planktonic δ 18O record of core MD99-2341 with the δ 18O record from Greenland Ice Core GISP2 show a close correlation of sea-surface water conditions and deep-sea contouritic sedimentation in the Gulf of Cadiz with Northern Hemisphere climate variability on millennial timescales. A high MOW velocity prevailed during Dansgaard-Oeschger stadials, Heinrich events and the Younger Dryas cold climatic interval. The MOW velocity was comparatively low during the warm Dansgaard-Oeschger interstadials, Bølling-Allerød and the Early Holocene. Rapid sea-level fluctuations on the order of 35 m during Marine Oxygen Isotope Stage 3 are considered to have exerted limiting controls on the MOW volume transport and thus positively modulated the MOW behaviour during the last 50 kyr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.