Abstract

This work exploits the resemblance between content-based image retrieval and image analysis with respect to the design of image descriptors and their effectiveness. In this context, two shape descriptors are proposed: contour saliences and segment saliences. Contour saliences revisits its original definition, where the location of concave points was a problem, and provides a robust approach to incorporate concave saliences. Segment saliences introduces salience values for contour segments, making it possible to use an optimal matching algorithm as distance function. The proposed descriptors are compared with convex contour saliences, curvature scale space, and beam angle statistics using a fish database with 11,000 images organized in 1100 distinct classes. The results indicate segment saliences as the most effective descriptor for this particular application and confirm the improvement of the contour salience descriptor in comparison with convex contour saliences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.