Abstract
We employ interactions from chiral effective field theory and compute binding energies, excited states, and radii for isotopes of oxygen with the coupled-cluster method. Our calculation includes the effects of three-nucleon forces and of the particle continuum, both of which are important for the description of neutron-rich isotopes in the vicinity of the nucleus 24O. Our main results are the placement of the neutron drip line at 24O, the assignment of spins, parities and resonance widths for several low-lying states of the drip line nucleus, and an efficient approximation that incorporates the effects of three-body interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.