Abstract
We present ultra-widely tunable micro-cavity devices realized by micro-opto-electro-mechanical system (MOEMS) technology. We modeled, fabricated and characterized 1.55μm micromachined optical filter and VCSEL devices capable of wide, monotonic and kink-free tuning by a single control parameter. Our vertical cavity devices comprise single or multiple horizontal air-gaps in the dielectric and InP-based material system. Distributed Bragg mirrors with multiple air-gaps are implemented. Due to the high refractive index contrast between air (n=1) and InP (n=3.17) only 3 periods are sufficient to guarantee a reflectivity exceeding 99.8% and offer an enormous stop-band width exceeding 500nm. Unlike InGaAsP/InP or dielectric mirrors they ensure short penetration depth of the optical intensity field in the mirrors and low absorption values. Stress control of the suspended membrane layers is of outmost importance for the fabrication of MOEMS devices. By controlling the stress we are able to fabricate InP membranes which are extremely thin (357nm thickness) and at the same time flat (radius of curvature above 5mm). Micromechanical single parametric actuation is achieved by both, thermal and electrostatic actuation. Filter devices with a record tuning over 127nm with 7.3V are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.