Abstract

BackgroundRecent guidelines suggest the adoption of regional citrate anticoagulation (RCA) as first choice CRRT anticoagulation modality in patients without contraindications for citrate. Regardless of the anticoagulation protocol, hypophosphatemia represents a potential drawback of CRRT which could be prevented by the adoption of phosphate-containing CRRT solutions. The aim was to evaluate the effects on acid–base status and phosphate supplementation needs of a new RCA protocol for Continuous Venovenous Hemodiafiltration (CVVHDF) combining the use of citrate with a phosphate-containing CRRT solution.MethodsTo refine our routine RCA-CVVH protocol (12 mmol/l citrate, HCO3- 32 mmol/l replacement fluid) (protocol A) and to prevent CRRT-related hypophosphatemia, we introduced a new RCA-CVVHDF protocol (protocol B) combining an 18 mmol/l citrate solution with a phosphate-containing dialysate/replacement fluid (HCO3- 30 mmol/l, Phosphate 1.2). A low citrate dose (2.5–3 mmol/l) and a higher than usual target circuit-Ca2+ (≤0.5 mmol/l) have been adopted.ResultsTwo historical groups of heart surgery patients (n = 40) underwent RCA-CRRT with protocol A (n = 20, 102 circuits, total running time 5283 hours) or protocol B (n = 20, 138 circuits, total running time 7308 hours). Despite higher circuit-Ca2+ in protocol B (0.37 vs 0.42 mmol/l, p < 0.001), circuit life was comparable (51.8 ± 36.5 vs 53 ± 32.6 hours). Protocol A required additional bicarbonate supplementation (6 ± 6.4 mmol/h) in 90% of patients while protocol B ensured appropriate acid–base balance without additional interventions: pH 7.43 (7.40–7.46), Bicarbonate 25.3 (23.8–26.6) mmol/l, BE 0.9 (-0.8 to +2.4); median (IQR). No episodes of clinically relevant metabolic alkalosis, requiring modifications of RCA-CRRT settings, were observed. Phosphate supplementation was needed in all group A patients (3.4 ± 2.4 g/day) and in only 30% of group B patients (0.5 ± 1.5 g/day). Hypophosphatemia developed in 75% and 30% of group A and group B patients, respectively. Serum phosphate was significantly higher in protocol B patients (P < 0.001) and, differently to protocol A, appeared to be steadily maintained in near normal range (0.97–1.45 mmol/l, IQR).ConclusionsThe proposed RCA-CVVHDF protocol ensured appropriate acid–base balance without additional interventions, providing prolonged filter life despite adoption of a higher target circuit-Ca2+. The introduction of a phosphate-containing solution, in the setting of RCA, significantly reduced CRRT-related phosphate depletion.

Highlights

  • Recent guidelines suggest the adoption of regional citrate anticoagulation (RCA) as first choice Continuous renal replacement therapy (CRRT) anticoagulation modality in patients without contraindications for citrate

  • In the present study we evaluated the effects on acid– base status and serum phosphate levels of a new RCA protocol for Continuous Venovenous Hemodiafiltration (CVVHDF) using an 18 mmol/l citrate solution in combination with a phosphate-containing solution, acting as dialysate and replacement fluid

  • Twenty patients underwent RCA-CVVH with protocol A while, after introduction of the new protocol, 20 patients were treated with RCA-CVVHDF according to protocol B

Read more

Summary

Introduction

Recent guidelines suggest the adoption of regional citrate anticoagulation (RCA) as first choice CRRT anticoagulation modality in patients without contraindications for citrate. Part of the infused citrate is removed by the treatment itself, depending on its operative settings; citrate returning to the patient is rapidly metabolized by the liver and the skeletal muscle in the Krebs’ cycle, with an ensuing bicarbonate production which provides a buffer supply to the patient [8]. On these bases, the citrate metabolic load for the patient is the difference between the delivered dose of citrate and the amount of citrate lost in the effluent [21]. Different combinations of citrate solutions and replacement fluids for CRRT, as well as the operational parameters setting peculiar of each RRT modality, might be associated with a high variability of buffers supply, significantly affecting the acid–base status of the patient [22,23,24]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.