Abstract
The distributed convex optimization problem is studied in this paper for any fixed and connected network with general constraints. To solve such an optimization problem, a new type of continuous-time distributed subgradient optimization algorithm is proposed based on the Karuch–Kuhn–Tucker condition. By using tools from nonsmooth analysis and set-valued function theory, it is proved that the distributed convex optimization problem is solved on a network of agents equipped with the designed algorithm. For the case that the objective function is convex but not strictly convex, it is proved that the states of the agents associated with optimal variables could converge to an optimal solution of the optimization problem. For the case that the objective function is strictly convex, it is further shown that the states of agents associated with optimal variables could converge to the unique optimal solution. Finally, some simulations are performed to illustrate the theoretical analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.