Abstract

The selective oxidation of methane to methanol is a key challenge in catalysis. Iron and copper modified ZSM-5 catalysts are shown to be effective for this reaction using H2O2 as the oxidant under continuous flow operation. Co-impregnation of ZSM-5 with Fe and Cu by chemical vapour impregnation yielded catalysts that showed high selectivity to methanol (>92% selectivity, 0.5% conversion), as the only product in the liquid phase. The catalysts investigated did not deactivate during continuous reaction, and methanol selectivity remained high. The effect of reaction pressure, temperature, hydrogen peroxide concentration and catalyst mass were investigated. An increase in any of these led to increased methane conversion, with high methanol selectivity (≥73%) maintained throughout. Catalysts were characterised using DR-FTIR, DR-UV-Vis and 27Al MAS-NMR spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.