Abstract

This paper treats the solution of nonlinear optimization problems involving discrete decision variables, also known as generalized disjunctive programming (GDP) or mixed-integer nonlinear programming (MINLP) problems, that arise in process engineering. The key idea is to eliminate the discrete decision variables by adding a set of continuous variables and constraints that represent the discrete decision space of the optimization problem. With such a reformulation, we are able to apply solution algorithms for purely continuous nonlinear optimization problems to efficiently calculate local minima of GDP or MINLP problems. In this contribution, we propose different alternatives to reformulate GDP/MINLP problems as continuous optimization problems. We furthermore investigate theoretical properties of the different reformulations with regard to their numerical solution. The proposed formulations are illustrated and analyzed on the basis of optimization problems dealing with process engineering applications involving stationary as well as dynamic process models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.