Abstract

A process combining single-column chromatography, racemization and solvent removal by membrane filtration to produce single enantiomers at high yields is proposed and investigated. Shortcut design methods are developed for a basic design using only a single chromatogram as input without the need for dynamic process simulation. A detailed process model is used to elucidate the role of relevant parameters and process dynamics. Experimental investigation of the process in fully coupled operation demonstrate the capability of the concept to produce single enantiomers at high yield and purity, as well as the applicability of the proposed design methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.