Abstract

We describe a method for the synthesis of gold nanoparticles in a stainless steel continuous flow tubular reactor using tetrachloroauric acid as a precursor but without using a classical reducing agent. Gold(III) ion is reduced by stainless steel to form gold nanoparticles which are collected at the end of the coil. A single-phase system is introduced that generates dispersed nanoparticles in the absence of reducing agents on their surface. By controlling flow rates and temperature, the size of the nanoparticles can be tuned in the range from 24 nm to 36 nm. The reproducibility of the preparation was investigated, relative standard deviation of both the wavelength of the peak and the intensity of the plasmonic absorption band were determined and found to vary by 0.15 % and 6.5 %, respectively. Flow synthesis is found to be an excellent alternative to chemical methods to produce stable gold nanoparticles of varying size in an efficiently way. The particles obtained also perform very well when used as a substrate in surface enhanced Raman scattering as shown by the characterization of carboxylated single walled carbon nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.