Abstract
Summary This paper is concerned with the problem of finite-time stabilization for some nonlinear stochastic systems. Based on the stochastic Lyapunov theorem on finite-time stability that has been established by the authors in the paper, it is proven that Euler-type stochastic nonlinear systems can be finite-time stabilized via a family of continuous feedback controllers. Using the technique of adding a power integrator, a continuous, global state feedback controller is constructed to stabilize in finite time a large class of two-dimensional lower-triangular stochastic nonlinear systems. Also, for a class of three-dimensional lower-triangular stochastic nonlinear systems, a recursive design scheme of finite-time stabilization is given by developing the technique of adding a power integrator and constructing a continuous feedback controller. Finally, a simulation example is given to illustrate the theoretical results. Copyright © 2014 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.