Abstract

The interaction between a plane shock wave in a plate and a wedge is considered within the framework of the nondissipative compressible fluid dynamic equations. The wedge is filled with a material that may differ from that of the plate. Based on the numerical solution of the original equations, self-similar solutions are obtained for several versions of the problem with an iron plate and a wedge filled with aluminum and for the interaction of a shock wave in air with a rigid wedge. The behavior of the solids at high pressures is approximately described by a two-term equation of state. In all the problems, a two-dimensional continuous compression wave develops as a wave reflected from the wedge or as a wave adjacent to the reflected shock. In contrast to a gradient catastrophe typical of one-dimensional continuous compression waves, the spatial gradient of a two-dimensional compression wave decreases over time due to the self-similarity of the solution. It is conjectured that a phenomenon opposite to the gradient catastrophe can occur in an actual flow with dissipative processes like viscosity and heat conduction. Specifically, an initial shock wave is transformed over time into a continuous compression wave of the same amplitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.