Abstract

Continuous and reversible tuning of the properties of optical metasurfaces, as a functionality that would enable a range of device applications, has been a focus of the metasurface research field in recent years. Tuning mechanisms proposed and demonstrated so far have generally relied upon changing the morphology of a metasurface or the intrinsic properties of its constituent materials. Here we introduce, via numerical simulation, an alternative approach to achieve continuous tuning of gradient metasurface response, and illustrate its potential application to the challenge of continuous beam steering, as required for example in LIDAR and machine vision systems. It is based upon the coherent illumination of a silicon nano-pillar metasurface with two counter-propagating beams. Control of the input beams' relative phase and intensity enables tuning of the individual nano-pillars' electromagnetic response and thereby the phase gradient of the array, which in turn steers the direction of the output beam continuously over an angular range of approximately 9 degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.